Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Sci Rep ; 13(1): 21586, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062159

RESUMO

In order to evaluate the effect of different weed management treatments on weeds, pest and natural enemies populations in sesame (Sesamum indicum L.), a 2-year study was conducted in East Azarbaijan, Iran in 2020-2021. The study was conducted based on randomized complete block design with four replications. The weed management treatments consisted of trifluralin use (960 g ai ha-1), wheat straw mulch (WSM), living mulches of fenugreek (Trigonella foenum-graecum L.) (FLM), bitter vetch (Vicia ervilia L.) (VLM), calendula (Calendula officinalis L.) (CLM) and one-time hand weeding (OHW). The effect of weed management treatment was significant on densities of insect pests, natural enemies and weed and also weed biomass and sesame seed yield. The lowest densities of insect pests including Myzus persicae, Brevicoryne brassicae, Helicoverpa armigera and Spodoptera exigua were observed in CLM treatment. Also, the highest densities of natural enemies Coccinella septompunctata, Coccinella undecimpunctata and Orius niger were observed in CLM treatment. The highest reductions in grass (51.0%), broadleaf (72.0%), and total (62.6%) weed biomasses and highest seed yield (1456 kg ha-1) were obtained in OHW. The seed yields in CLM and WSM treatments were not significantly different with trifluralin treatment and could be recommended in sustainable production of sesame.


Assuntos
Afídeos , Besouros , Produção Agrícola , Plantas Daninhas , Sesamum , Animais , Insetos , Poaceae , Distribuição Aleatória , Sesamum/parasitologia , Trifluralina/farmacologia , Triticum , Controle de Plantas Daninhas/métodos , Controle de Pragas/métodos
2.
J Environ Sci Health B ; 58(9): 594-602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37605342

RESUMO

Pesticide residues in the environment have irreparable effects on human health and other organisms. Hence, it is necessary to treat and degrade them from polluted water. In the current work, the electrochemical removal of the fenitrothion (FT), trifluralin (TF), and chlorothalonil (CT) pesticides were performed by catalytic electrode. The characteristics of SnO2-Sb2O3, PbO2, and Bi-PbO2 electrodes were described by FE-SEM and XRD. Dynamic electrochemical techniques including cyclic voltammetry, electrochemical impedance spectroscopy, accelerated life, and linear polarization were employed to investigate the electrochemical performance of fabricated electrodes. Moreover, evaluate the risk of toxic metals release from the catalytic electrode during treatment process was investigated. The maximum degradation efficiency of 99.8, 100, and 100% for FT, TF, and CT was found under the optimal condition of FT, TF, and CT concentration 15.0 mg L-1, pH 7.0, current density 7.0 mA cm-2, and electrolysis time of 120 min. The Bi-PbO2, PbO2, and SnO2-Sb2O3 electrodes revealed the oxygen evolution potential of 2.089, 1.983, 1.914 V, and the service lifetime of 82, 144, and 323 h, respectively. The results showed that after 5.0 h of electrolysis, none of the heavy metals such as Bi, Pb, Sb, Sn, and Ti were detected in the treated solution.


Assuntos
Fenitrotion , Trifluralina , Humanos , Eletrodos , Medição de Risco , Atenção à Saúde , Água
3.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240033

RESUMO

Griseofulvin was considered an effective agent for cancer therapy in past decades. Although the negative effects of griseofulvin on microtubule stability are known, the exact target and mechanism of action in plants remain unclear. Here, we used trifluralin, a well-known herbicide targeting microtubules, as a reference and revealed the differences in root tip morphology, reactive oxygen species production (ROS), microtubule dynamics, and transcriptome analysis between Arabidopsis treated with griseofulvin and trifluralin to elucidate the mechanism of root growth inhibition by griseofulvin. Like trifluralin, griseofulvin inhibited root growth and caused significant swelling of the root tip due to cell death induced by ROS. However, the presence of griseofulvin and trifluralin caused cell swelling in the transition zone (TZ) and meristematic zone (MZ) of root tips, respectively. Further observations revealed that griseofulvin first destroyed cortical microtubules in the cells of the TZ and early elongation zone (EZ) and then gradually affected the cells of other zones. The first target of trifluralin is the microtubules in the root MZ cells. Transcriptome analysis showed that griseofulvin mainly affected the expression of microtubule-associated protein (MAP) genes rather than tubulin genes, whereas trifluralin significantly suppressed the expression of αß-tubulin genes. Finally, it was proposed that griseofulvin could first reduce the expression of MAP genes, meanwhile increasing the expression of auxin and ethylene-related genes to disrupt microtubule alignment in root tip TZ and early EZ cells, induce dramatic ROS production, and cause severe cell death, eventually leading to cell swelling in the corresponding zones and inhibition of root growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tubulina (Proteína)/metabolismo , Arabidopsis/metabolismo , Griseofulvina/farmacologia , Griseofulvina/metabolismo , Trifluralina/metabolismo , Trifluralina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Microtúbulos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Raízes de Plantas/metabolismo
4.
J Agric Food Chem ; 71(1): 255-266, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36583683

RESUMO

Concerned about weed infestation, a major threat to food production and herbicide resistance that interferes in the mechanism of action of the main herbicides, we have synthesized eight isatin derivatives using the "Click Chemistry" approach through copper-catalyzed azide-alkyne cycloadditions (CuAAC). Sixteen isatin derivatives were evaluated for their phytotoxic activity against the seed culture of the model plants, Lactuca sativa and Allium cepa. Six of them showed phytotoxic activity similar to the positive control, trifluralin. Hypocotyl length measurement analysis in L. sativa revealed that triazole derivative 8 is more active than trifluralin. For A. cepa, root length measurement analyses revealed that 3, 10, 14, 16, and 17 were similar to the positive control trifluralin. Three-dimensional quantitative structure-activity relationship (3D-QSAR) comparative molecular field analysis (CoMFA) model construction using the acetolactate synthase (ALS) crystallographic structure displayed pki values of predicted inhibitory activity and contour maps revealing sterically bulky groups for 11, the CF3 group in ortho, and for 17, Br in ortho, favoring the inhibitory ALS activity.


Assuntos
Herbicidas , Isatina , Relação Quantitativa Estrutura-Atividade , Isatina/farmacologia , Trifluralina , Herbicidas/química
5.
Chemosphere ; 311(Pt 1): 137001, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36419269

RESUMO

In this work, modified Bi-PbO2 electrode was fabricated and employed for simultaneous degradation of fenitrothion (FT), trifluralin (TF), and chlorothalonil (CT) from synthetic and pesticide wastewater through the anodic oxidation process. A novel high-performance liquid chromatography method was developed and optimized to identify the pesticides simultaneously. Quadratic models were developed to investigate the effects of main operating parameters and predict the degradation efficiencies of the treatment processes. The R2 of the degradation efficiencies were obtained of 0.9847, 0.9910, and 0.9821 for FT, TF, and CT, respectively, which indicates the degree of conformity between the experimental and the actual values of degradation efficiencies, and the adjusted R2 values for the degradation efficiency of FT, TF, and CT in proposed models were 0.9826, 0.9898, and 0.9796, and the values of the predicted R2 were 0.9792, 0.9875, and 0.9755, respectively. The maximum degradation efficiencies of 99.7, 100, and 100% obtained for FT, TF, and CT, respectively, under the optimal operating condition of FT, TF, and CT concentration of 10.0, 6.0, and 8.0 mg L-1, respectively, pH 6.0, the current density 6.0 mA cm-2, and electrolysis time of 60 min. Chemical oxygen demand removal and energy consumption were 64.7% and 5.1 kWh m-3. Eventually, the generated intermediates and other produced species of pesticides through the treatment process was evaluated using a gas chromatography-mass spectrometry method, and their degradation pathways were proposed.


Assuntos
Praguicidas , Titânio , Eletrodos , Trifluralina , Fenitrotion
6.
Environ Sci Pollut Res Int ; 29(51): 76687-76711, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175724

RESUMO

The widespread use of herbicides has increased concern about the hazards and risks to animals living in terrestrial and aquatic ecosystems. A comprehensive understanding of their effective action at different levels of biological organization is critical for establishing guidelines to protect ecosystems and human health. Dinitroanilines are broad-spectrum pre-emergence herbicides currently used for weed control in the conventional agriculture. They are considered extremely safe agrochemicals because they act specifically on tubulin proteins and inhibit shoot and root growth of plants. However, there is a lack of toxicity information regarding the potential risk of exposure to non-target organisms. The aim of the present review is to focus on side effects of the most commonly used active ingredients, e.g. pendimethalin, oryzalin, trifluralin and benfluralin, on animal non-target cells of invertebrates and vertebrates. Acute toxicity varies from slightly to high in terrestrial and aquatic species (i.e. nematodes, earthworms, snails, insects, crustaceans, fish and mammals) depending on the species-specific ability of tested organisms to adsorb and discharge toxicants. Cytotoxicity, genotoxicity and activation of oxidative stress pathways as well as alterations of physiological, metabolic, morphological, developmental and behavioural traits, reviewed here, indicate that exposure to sublethal concentrations of active ingredients poses a clear hazard to animals and humans. Further research is required to evaluate the molecular mechanisms of action of these herbicides in the animal cell and on biological functions at multiple levels, from organisms to communities, including the effects of commercial formulations.


Assuntos
Herbicidas , Trifluralina , Animais , Humanos , Trifluralina/química , Herbicidas/química , Ecossistema , Tubulina (Proteína) , Dano ao DNA , Mamíferos
7.
Sci Total Environ ; 840: 156695, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35709999

RESUMO

Trifluralin (TFL) is a highly persistent with a strong adsorption capacity on soil particles herbicide. This study was to isolate microbial consortia and bacterial strains from a soil with a historical application of pesticides to evaluate their potential to degrade TFL in soil. Different bioremediation techniques were considered for increasing the effectiveness of TFL degradation in soil. These techniques consisted of: i) biostimulation, using a nutrients solution (NS); ii) bioaugmentation, using a natural microbial consortium (NMC), seven individual bacterial strains isolated from NMC, and an artificial bacterial consortium formed by the seven TFL-degrading bacterial strains (ABC); iii) bioavailability enhancement, using a biodegradable compound, a randomly methylated cyclodextrin, RAMEB. Biostimulation using NS leads up to 34 % of soil TFL biodegraded after 100 d. When the contaminated soil was inoculated with NMC or ABC consortia, TFL loss increased up to 62 % and 74 %, respectively, with DT50 values (required time for the pollutant concentration to decline to half of its initial value) of 5.9 and 11 d. In the case of soil inoculation with the isolated individual bacterial strains, the extent of TFL biodegradation ranged widely from 2.3 % to 55 %. The most efficient bacterial strain was Arthrobacter aurescens CTFL7 which had not been previously described in the literature as a TFL-degrading bacterium. Bioaugmentation with CTFL7 bacterium was also tested in the presence of RAMEB, provoking a drastic increase in herbicide biodegradation up to 88 %, achieving a DT50 of only 19 d. Cyclodextrins had never been tested before for enhancement of TFL biodegradation. An ecotoxicity assay was performed to confirm that the proposed bioremediation techniques were also capable to reduce toxicity. A Microtox® test showed that after application A. aurescens CTF7 and A. aurescens CTF7 + RAMEB, the TFL-contaminated soil, which initially presented acute toxicity, became non-toxic at the end of the biodegradation experiments.


Assuntos
Ciclodextrinas , Herbicidas , Poluentes do Solo , Bactérias/metabolismo , Biodegradação Ambiental , Herbicidas/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Trifluralina
8.
Environ Int ; 165: 107321, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35691095

RESUMO

Pesticides, which are associated with endocrine dysfunction, immunological dysregulation, and cancer, are widespread sources of drinking water contamination. The state of Paraná has a population of 11 million, is the second largest grain producer in Brazil and is a leading consumer of pesticides. In this study, we analyzed the extent of drinking water contamination from 11 proven, probable, or potentially carcinogenic pesticides (alachlor, aldrin-dieldrin, atrazine, chlordane, DDT-DDD-DDE, diuron, glyphosate-AMPA, lindane-γ-HCH, mancozeb-ETU, molinate, and trifluralin) in 127 grain-producing municipalities in the state of Paraná. Extensive contamination of drinking water was found, including legacy pesticides such as aldrin-dieldrin (mean 0.047 ppb), DDT-DDD-DDE (mean: 0.07), chlordane (mean: 0.181), and lindane-HCH (mean: 2.17). Most of the municipalities were significantly above the maximum limits for each one of the currently allowed pesticides (67% for alachlor, 9.44% for atrazine, 96.85% for diuron, 100% for glyphosate-AMPA, 80.31% for mancozeb-ETU, 91.33% for molinate, and 12.6% for trifluralin). Ninety-seven percent of municipalities presented a sum of all pesticides at levels significantly above (189.84 ppb) the European Union preconized limits (<0.5 ppb). Using the mean pesticide concentration in water (ppb), the exposed population for each municipality, and the benchmark cancer risk for pesticides, we estimated the minimum number of cancer cases attributable to pesticide-contaminated drinking water during the period (total of 542 cases). More than 80% were attributed to mancozeb-ETU and diuron. Glyphosate-AMPA and diuron-attributable cases strongly correlated with the total cancer cases in the same period (R = 0.8117 and 0.8138, respectively) as well as with breast cancer cases (R = 0.7695 and 0.7551, respectively). Water contamination was significantly correlated with the sum of the estimated cancer cases for all 11 pesticides detected in each city (R = 0.58 and p < 0.0001). These findings reveal extensive contamination of drinking water in the state of Paraná and suggest that contamination may increase the risk of cancer in this region.


Assuntos
Atrazina , Água Potável , Neoplasias , Praguicidas , Aldrina , Brasil , Clordano , DDT , Diclorodifenil Dicloroetileno , Dieldrin , Diurona , Hexaclorocicloexano/análise , Neoplasias/epidemiologia , Praguicidas/análise , Trifluralina , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
9.
Environ Pollut ; 307: 119495, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605831

RESUMO

Ethalfluralin, a dinitroaniline-type herbicide, has been used for decades. As a result, its residues are detected on some farmlands. To determine the molecular mechanisms underlying the detrimental effects of ethalfluralin on early pregnancy, porcine luminal epithelium and trophectoderm cell lines were used. Ethalfluralin was found to inhibit the viability, proliferation, and migration of porcine luminal epithelial (pLE) and porcine trophectoderm (pTr) cells. Additionally, ethalfluralin induced apoptotic cell death by means of an imbalance in calcium homeostasis in both pLE and pTr cells. Ethalfluralin decreased mitochondrial membrane potential (ΔΨm) and impaired mitochondrial respiration by downregulating the mitochondrial respiratory complex-related genes. Ethalfluralin also activated endoplasmic reticulum stress signals and autophagy pathways, increased the phosphorylation of P38 MAPK and NF-κB, and suppressed the PI3K/AKT signaling pathway. Taken together, this study elucidated the molecular mechanisms by which ethalfluralin impedes the viability and mitochondrial function in fetal trophectoderm and maternal endometrial cells during early pregnancy.


Assuntos
Implantação do Embrião , Fosfatidilinositol 3-Quinases , Animais , Apoptose , Proliferação de Células , Feminino , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Suínos , Trifluralina/análogos & derivados
10.
Sci Total Environ ; 833: 155105, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398436

RESUMO

Herbicides are used extensively in Australian grain cropping systems. Despite occasional observations of herbicide-induced phytotoxicity, there is little information on the persistence and carryover of multiple herbicide classes in cropping soils and the risk to subsequent crops. Two soil surveys were conducted, in 2015 (n = 40) and 2016 (n = 42), across different Australian grain cropping fields prior to sowing of winter crops, and soil samples analysed for herbicide residues (16 analytes in 2015 and 22 analytes in 2016). Samples in 2015 were taken at two depths (0-10 cm and 10-30 cm), whilst samples in 2016 were taken in topsoil (0-10 cm) only, but from two discrete locations in each field. Our research in both years found at least one herbicide (or herbicide metabolite) residue at all sites, with a median of 6 analytes detected in 2015 and 7 analytes detected in 2016. The most frequently detected residues were glyphosate and its primary breakdown product aminomethylphosphonic acid (AMPA), in 87 and 100%, respectively, of topsoil (0-10 cm) samples in 2015, and 67 and 93% of samples in 2016. The median concentration of glyphosate in 2015 was 0.12 mg kg-1, while AMPA was 0.41 mg kg-1. In 2016, median concentrations of glyphosate and AMPA were 0.22 mg kg-1 and 0.31 mg kg-1. Residues of 2,4-dichlorophenoxyacetic acid, trifluralin and diflufenican were also detected in >40% of topsoil samples in both seasons, but with median concentrations of <0.05 mg kg-1. A literature review found limited availability of phytotoxicity thresholds for major grain crops exposed to soilborne herbicide residues. A risk assessment using available thresholds suggested that although up to 29% of fields contained trifluralin residues that could constrain cereal crop growth, and 24% of fields contained residues of phenoxy or sulfonylureas that could affect dicotyledonous crops, the majority of these fields when planted with tolerant crops would be unlikely to be affected by herbicide residues. More work is required to ascertain the spatial distribution, bioavailability and phytotoxicity of residues and residue mixtures to enable a more accurate agronomic risk assessment.


Assuntos
Herbicidas , Austrália , Produtos Agrícolas , Grão Comestível/química , Herbicidas/análise , Solo/química , Trifluralina/análise , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
11.
Pest Manag Sci ; 78(4): 1547-1554, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981627

RESUMO

BACKGROUND: Lolium rigidum is the most important weed in Australian agriculture and pre-emergence dinitroaniline herbicides (e.g., trifluralin) are widely and persistently used for Lolium control. Consequently, evolution of resistance to dinitroaniline herbicides has been increasingly reported. Resistance-endowing target-site α-tubulin gene mutations are identified with varying frequency. This study investigated the putative fitness cost associated with the common resistance mutation Val-202-Phe and the rare resistance mutation Arg-243-Met causing helical plant growth. RESULTS: Results showed a deleterious effect of Arg-243-Met on fitness when plants are homozygous for this mutation. This was evidenced as high plant mortality, severely diminished root and aboveground vegetative growth (lower relative growth rate), and very poor fecundity compared with the wild-type, which led to a nearly lethal fitness cost of >99.9% in competition with a wheat crop. A fitness penalty in vegetative growth was evident, but to a much lesser extent, in plants heterozygous for the Arg-243-Met mutation. By contrast, plants possessing the Val-202-Phe mutation exhibited a fitness advantage in vegetative and reproductive growth. CONCLUSION: The α-tubulin mutations Arg-243-Met and Val-202-Phe have contrasting effects on fitness. These results help understand the absence of plants homozygous for the Arg-243-Met mutation and the high frequency of plants carrying the Val-202-Phe mutation in dinitroaniline-resistant L. rigidum populations. The α-tubulin Arg-243-Met mutation can have an exceptional fitness cost with nearly lethal effects on resistant L. rigidum plants. © 2022 Society of Chemical Industry.


Assuntos
Herbicidas , Lolium , Austrália , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , Trifluralina/farmacologia
12.
J Pharm Sci ; 111(6): 1798-1811, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35081406

RESUMO

Herein, Trifluralin (TFL) laden transfersomes (TFS) were investigated against Cutaneous Leishmaniasis (CL), via localized and targeted dermal delivery of TFL. Designed TFL-TFS were optimized utilizing 23 full factorial design on the basis of desired response factors including Particle size (P.S), Polydispersity index (PDI), TFL entrapment (%EE) and deformability index (DI). Optimized formulation was found to display P.S of 140.3 ± 2.3, PDI of 0.006 ± 0.002, %EE of 86 ± 0.5 and 43.5 ± 1.0 DI. Results of TEM and XRD analysis have shown intact spherical structure of TFL-TFS and alteration in TFL crystallinity, respectively. Moreover, the optimized TFL-TFS were loaded in Carbopol-940 gel to attain protracted skin retention. TFL-TFS were found to exhibit sustain TFL release profile for up to 24 h. Ameliorated skin permeation of TFL-TFS, even in absence of permeation enhancers, has shown its suitability for cutaneous application. Macrophage uptake assay demonstrated higher intracellular penetration, evidenced by intense reddish fluorescence of rhodamine loaded TFS in comparison to rhodamine-solution. In vitro anti-leishmanial assessment was showing 2.86-folds and 3.07-folds decrement in IC50-value of TFL-TFS against L. tropica KWH23 amastigotes and promastigotes, respectively. Percent inhibition assay against intra-macrophage amastigotes demonstrated that 90.87% amastigotes were assassinated at 50 µg/ml concentration of TFL-TFS, in comparison to the plain TFL-solution, exhibiting 54% parasitic killing.


Assuntos
Leishmaniose Cutânea , Trifluralina , Administração Cutânea , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Tamanho da Partícula , Rodaminas , Pele , Trifluralina/uso terapêutico
13.
Food Chem ; 373(Pt B): 131527, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34772566

RESUMO

Novel porous covalent organic framework (COF) based on condensation reaction between cyanuric chloride, 4,4'-ethylendianiline, and 3,4,9,10-perylenetetracarboxylic dianhydride was synthesized via sealed tube condition. The results COF was used as a new adsorbent for solid-phase microextraction (SPME) for extracting trifluralin and chlorpyrifos from vegetables, fruit samples, and wastewater. Gas chromatograph with a corona discharge-ion mobility spectrometer as the detector was also used for analyzing the target analytes. Some parameters that affected the extraction, such as stirring rate, time and temperature of extraction and pH were investigated, exhaustively. The detection limits were 0.13, and 0.15 µg/L and the linear ranges of 0.45-20 and 0.50-25 µg/L with a linearity coefficient of 0.9965 and 0.9987 were also obtained for trifluralin and chlorpyrifos, respectively. The method was applied successfully to analyze some real samples of cucumber, carrot, grape, and agriculture wastewater, and the results showed a relative recovery in the range of 87% to 110%.


Assuntos
Clorpirifos , Estruturas Metalorgânicas , Limite de Detecção , Microextração em Fase Sólida , Trifluralina , Água
14.
Pest Manag Sci ; 78(3): 1206-1212, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837476

RESUMO

BACKGROUND: Trifluralin is widely used in Australia as one of the important pre-emergence herbicides to control annual ryegrass (Lolium rigidum Gaud.) populations. Trifluralin resistance evolution and mechanisms have been identified in some ryegrass populations. RESULTS: In this study, 21 putative resistant field survey populations from Western Australian were screened with trifluralin, and 90% (19 of 21) contained individuals surviving 480 g ha-1 trifluralin treatment. Twelve populations contained individuals possessing the known α-tubulin resistance mutations at Val-202, Thr-239 and Arg-243 in TUA4 (alpha-tubulin 4 n), plus multiple potential resistance mutations in TUA4 pending genetic confirmation. Three populations had only individuals carrying newly identified (but uncharacterized) mutations in TUA3/TUA4. Radioactive work found that six populations evolved metabolic resistance to trifluralin, and at least four of them also possessed the known and/or putative target-site mutations. CONCLUSION: These results confirm that a high incidence of resistance to the dinitroaniline herbicide (trifluralin) is present, and target-site tubulin mutations make a major contribution to resistance in these annual ryegrass populations. Co-evolution of both target-site and non-target-site resistance to per-emergence herbicides warrants diverse management tactics.


Assuntos
Herbicidas , Lolium , Austrália , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Humanos , Lolium/genética , Trifluralina , Austrália Ocidental
15.
Chem Asian J ; 16(23): 3970-3977, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606687

RESUMO

A novel fluorescent probe was designed and synthesized from tetraphenylethene (TPE) and polyhedral oligomeric silsesquioxanes (POSS) via Heck-palladium catalyzed cross-coupling reaction. The as-synthesized TPE functionalized probe performed good solvent stability and selectively preconcentration capability towards target analyte due to its stable structure and the adsorption property. The morphology as well as the physical and chemical properties of the POSS@TPE were carefully characterized. The POSS@TPE was employed to develop an effective fluorescent probe for trifluralin, with a response range of 0.1-80 mg/kg and a detection limit of 0.102 mg/kg. The mixed mechanisms of inner-filter effect (IFE) and photoinduced electron transfer (PET) explain the selectivity of POSS@TPE. Rapid detection for trifluralin in tomato and celery has been achieved with recoveries between 99.4-120.7% (RSD≤3.4%), and the results were verified compared with GC-MS method.


Assuntos
Apium/química , Corantes Fluorescentes/química , Compostos de Organossilício/química , Solanum lycopersicum/química , Estilbenos/química , Trifluralina/análise
16.
Genes (Basel) ; 12(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34440399

RESUMO

Amaranthus palmeri S. Watson (Palmer amaranth) is considered a problematic and troublesome weed species in many crops in the USA, partly because of its ability to evolve resistance to herbicides. In this study, we explored the mechanism of resistance in a trifluralin-resistant A. palmeri accession collected from Arkansas, USA. Dose-response assays using agar plates demonstrated an EC50 (effective concentration that reduces root length by 50%) of 1.02 µM trifluralin compared to 0.39 µM obtained in the susceptible accession. Thus, under these conditions, the resistant accession required 2.6 times more trifluralin to inhibit root length by 50%. Seeds in the presence or absence of the cytochrome P450-inhibitior malathion displayed a differential response with no significant influence on root length, suggesting that resistance is not P450-mediated. In addition, application of 4-chloro-7-nitrobenzofurazan (NBD-Cl), a glutathione S-transferase (GST) inhibitor, showed significant differences in root length, indicating that GSTs are most likely involved in the resistance mechanism. Sequencing of α- and ß-tubulin genes revealed no single nucleotide polymorphisms (SNPs) previously described between accessions. In addition, relative gene copy number of α- and ß-tubulin genes were estimated; however, both resistant and susceptible accessions displayed similar gene copy numbers. Overall, our results revealed that GST-mediated metabolism contributes to trifluralin resistance in this A. palmeri accession from Arkansas.


Assuntos
Amaranthus/efeitos dos fármacos , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Trifluralina/farmacologia , Amaranthus/genética , Sequência de Aminoácidos , Arkansas , Relação Dose-Resposta a Droga , Dosagem de Genes , Alinhamento de Sequência , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
17.
Chemosphere ; 284: 131300, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34225126

RESUMO

Trifluralin is a widely used dinitroaniline herbicide in cotton fields of China but is highly persistent in the environment and can act as a biotoxin and cause genotoxicity to terrestrial organisms, including humans. In this study, the concentrations and distribution of trifluralin residues in 139 soil samples from the major cotton-producing areas of China were investigated. The trifluralin concentrations ranged from ND (not detected) to 66.39 µg/kg dry weight (dw), with a geometric mean of 4.13 µg/kg dw. The detection frequency of trifluralin in Hebei (75%) was higher than that in Xinjiang (66%) and Shandong (40%), but the mean trifluralin concentration was highest in Xinjiang (5.98 µg/kg dw), followed by Hebei (5.06 µg/kg dw) and Shandong (3.19 µg/kg dw). No trifluralin residues were detected in cotton soil in Anhui, Jiangxi and Hunan. The residual amount of trifluralin in soil was significantly correlated with the soil organic matter content. The risk quotient method was used to evaluate the ecological risks associated with trifluralin. Results indicated that trifluralin in all the samples had a low risk to earthworms, but trifluralin in same cotton soils showed high risks to wheat, barley and lucerne. Overall, our work is helpful to understand the residual situation of trifluralin in Chinese cotton soil, to assess the environmental risk of trifluralin, and to control the use and safety of trifluralin in cotton field cultivation.


Assuntos
Herbicidas , Poluentes do Solo , China , Monitoramento Ambiental , Herbicidas/análise , Herbicidas/toxicidade , Humanos , Solo , Poluentes do Solo/análise , Trifluralina
18.
Pest Manag Sci ; 77(11): 5139-5148, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34260812

RESUMO

BACKGROUND: Lolium rigidum is the weed of greatest economic impact in Australia due to its formidable capacity to evolve herbicide resistance. In this study, 579 field-sampled L. rigidum populations were tested for resistance to 21 herbicides applied at the recommended rate. Nine herbicide treatments were binary mixtures. RESULTS: A total of 15 876 individual resistance tests were conducted by screening two million seeds at the recommended label rate. The overall frequency of resistant populations was 31%, 14%, 71%, 6% and 0% in response to the post-emergence herbicide treatments clethodim, clethodim + butroxydim, imazamox + imazapyr, glyphosate and paraquat, respectively. The resistance frequency to stand-alone pre-emergence wheat-selective herbicides ranged from 10% to 34%. Conversely, the levels of resistance to pre-emergence mixtures or stand-alone propyzamide were significantly lower, ranging from 6% to 0%. In winter, the responses to glyphosate, paraquat, cinmethylin, prosulfocarb, pyroxasulfone and trifluralin were reassessed, with 7%, 0%, 0%, 21%, 21% and 28% as the respective resistance frequencies. South Australia and Victoria are identified as epicenters for L. rigidum population resistance to pyroxasulfone, whereas populations in New South Wales have the greatest resistance to glyphosate and in Western Australia to clethodim. CONCLUSIONS: For the first time, resistance levels to stand-alone herbicides and binary mixtures are geographically ranked across the Australian continent by benchmark statistical analysis of resistance frequencies and distribution. The extension of these results will raise awareness of rapidly emerging patterns of herbicide resistance, encouraging the adoption of cost-effective modes of action and integration of diverse strategies for weed resistance management.


Assuntos
Herbicidas , Lolium , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Trifluralina , Vitória
19.
J Mol Recognit ; 34(11): e2927, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34288170

RESUMO

Monitoring of herbicides and pesticides in water, food, and the environment is essential for human health, and this requires low-cost, portable devices for widespread deployment of this technology. For the first time, a wearable glove-based electrochemical sensor based on conductive Ag nano-ink was developed for the on-site monitoring of trifluralin residue on the surface of various substrates. Three electrode system with optimal thicknesses was designed directly on the finger surface of a rubber glove. Then, fabricated electrochemical sensor used for the direct detection of trifluralin in the range of 0.01 µM to 1 mM on the surface of tomato and mulberry leaves using square wave voltammetry (SWV) and difference pulse voltammetry technique. The obtained LLOQ was 0.01 µM, which indicates the suitable sensitivity of this sensor. On the other hand, this sensor is portable, easy to use, and has a high environmental capability that can be effective in detecting other chemical threats in the soil and water environment.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletrodos , Poluição Ambiental/análise , Herbicidas/análise , Monitorização Fisiológica/instrumentação , Trifluralina/análise , Dispositivos Eletrônicos Vestíveis/estatística & dados numéricos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Dedos/fisiologia , Humanos , Solanum lycopersicum/metabolismo , Monitorização Fisiológica/métodos , Morus/metabolismo , Folhas de Planta/metabolismo , Tato
20.
J Mol Recognit ; 34(10): e2923, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34131991

RESUMO

In this study, a flexible glove-based electrochemical sensor as a wearable point-of-use screening tool has been fabricated for defense and food security applications. To design the wearable glove-based sensor, we drew conductive patterns on the fingers of a rubber glove via gold@silver-modified graphene quantum dots (Au@Ag core-shell/graphene quantum dots [GQDs]) nano-ink with optimal thickness. Then, this platform is combined with a portable electrochemical analyzer for on-site detection of trifluralin pesticide in the range of 10 nM to 1 mM with the low limit of quantification (LLOQ) of 10 nM. The high efficiency and distinction of the trifluralin at specified concentrations in real leaf and apple samples were performed by simply touching with the glove and in spikes solution by immersing of fingertips. With their high sensitivity, selectivity, rapid, and easy operation pesticide analysis, these glove-embedded sensors can also be engaged in on-site monitor of other chemical threats and can be expanded to water and environmental samples.


Assuntos
Técnicas Eletroquímicas/métodos , Herbicidas/análise , Trifluralina/análise , Dispositivos Eletrônicos Vestíveis , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Grafite/química , Limite de Detecção , Malus/química , Nanopartículas Metálicas/química , Folhas de Planta/química , Pontos Quânticos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...